Class 8 Algebra Formulas
Basic Algebraic Identities
| Formula | Expansion |
|---|---|
| (a + b)² | a² + 2ab + b² |
| (a – b)² | a² – 2ab + b² |
| (a + b)(a – b) | a² – b² |
| (a + b + c)² | a² + b² + c² + 2ab + 2bc + 2ca |
| (a – b – c)² | a² + b² + c² – 2ab + 2bc – 2ca |
Cube Formulas
| Formula | Factorization |
|---|---|
| (a + b)³ | a³ + 3a²b + 3ab² + b³ |
| (a – b)³ | a³ – 3a²b + 3ab² – b³ |
| a³ + b³ | (a + b)(a² – ab + b²) |
| a³ – b³ | (a – b)(a² + ab + b²) |
Higher Power Formulas
- (a + b)⁴ = a⁴ + 4a³b + 6a²b² + 4ab³ + b⁴
- (a – b)⁴ = a⁴ – 4a³b + 6a²b² – 4ab³ + b⁴
- a⁴ – b⁴ = (a – b)(a + b)(a² + b²)
- a⁵ – b⁵ = (a – b)(a⁴ + a³b + a²b² + ab³ + b⁴)
- aⁿ – bⁿ = (a – b)(aⁿ⁻¹ + aⁿ⁻²b + … + bⁿ⁻¹)
Laws of Exponents
- aᵐ × aⁿ = aᵐ⁺ⁿ
- aᵐ ÷ aⁿ = aᵐ⁻ⁿ
- (aᵐ)ⁿ = aᵐⁿ
- (ab)ᵐ = aᵐ × bᵐ
- a⁰ = 1
- a⁻ᵐ = 1/aᵐ
Algebraic Properties
Commutative Property
Contents
- Class 8 Algebra Formulas
- Basic Algebraic Identities
- Cube Formulas
- Higher Power Formulas
- Laws of Exponents
- Algebraic Properties
- Class 9 Algebra Formulas
- Logarithmic Formulas
- Class 10 Algebra Formulas
- Quadratic Formula
- Arithmetic Sequence Formulas
- Geometric Sequence Formulas
- Class 11 Algebra Formulas
- Factorial Formula
- Permutation Formulas
- Combination Formula
- Difference of Powers
- Exponent Rules
- Class 12 Algebra Formulas
- Vector Algebra Formulas
- Addition: a + b = b + a
- Multiplication: a × b = b × a
Associative Property
- Addition: (a + b) + c = a + (b + c)
- Multiplication: (a × b) × c = a × (b × c)
Distributive Property
- a × (b + c) = a × b + a × c
- a × (b – c) = a × b – a × c
Identity Element
- Addition: a + 0 = a
- Multiplication: a × 1 = a
Inverse Element
- Addition: a + (-a) = 0
- Multiplication: a × (1/a) = 1 (where a ≠ 0)
Class 9 Algebra Formulas
Logarithmic Formulas
- logₐ(xy) = logₐx + logₐy
- logₐ(x/y) = logₐx – logₐy
- logₐ(xᵐ) = m logₐx
- logₐa = 1
- logₐ1 = 0
Class 10 Algebra Formulas
Quadratic Formula
For ax² + bx + c = 0:
- x = [−b ± √(b² − 4ac)] / 2a
Arithmetic Sequence Formulas
For sequence: a, a + d, a + 2d, …
- nth term: aₙ = a + (n – 1)d
- Sum of first n terms: Sₙ = n/2 [2a + (n – 1)d]
Geometric Sequence Formulas
For sequence: a, ar, ar², …
- nth term: aₙ = arⁿ⁻¹
- Sum of first n terms: Sₙ = a(1 – rⁿ)/(1 – r)
- Sum of infinite terms (when |r| < 1): S = a/(1 – r)
Class 11 Algebra Formulas
Factorial Formula
- n! = n × (n – 1) × (n – 2) × … × 3 × 2 × 1
Permutation Formulas
- ⁿPᵣ = n!/(n – r)!
Combination Formula
- ⁿCᵣ = n!/[r!(n – r)!]
Difference of Powers
When n is even:
- aⁿ – bⁿ = (a – b)(aⁿ⁻¹ + aⁿ⁻²b + … + bⁿ⁻¹)
When n is odd:
- aⁿ + bⁿ = (a + b)(aⁿ⁻¹ – aⁿ⁻²b + … + bⁿ⁻¹)
Exponent Rules
- (aᵐ)(aⁿ) = aᵐ⁺ⁿ
- (ab)ᵐ = aᵐbᵐ
- (aᵐ)ⁿ = aᵐⁿ
Class 12 Algebra Formulas
Vector Algebra Formulas
For vector a = xi + yj + zk:
- Magnitude: |a| = √(x² + y² + z²)
- Unit vector: â = a/|a|
Dot Product
- a ⋅ b = |a||b|cosθ (where θ is the angle between vectors)
Cross Product
- a × b = |a||b|sinθ (where θ is the angle between vectors)
Scalar Triple Product
- [a b c] = a ⋅ (b × c) = (a × b) ⋅ c
Vector Addition Properties
- a + b = b + a (Commutative)
- a + (b + c) = (a + b) + c (Associative)
- k(a + b) = ka + kb (Distributive)
Direction Cosines
- For direction angles α, β, γ: l = cosα, m = cosβ, n = cosγ
- cos²α + cos²β + cos²γ = 1
Important Unit Vectors

