AlGebra NCERT Formulas

Admin
5 Min Read

Basic Algebraic Identities

FormulaExpansion
(a + b)²a² + 2ab + b²
(a – b)²a² – 2ab + b²
(a + b)(a – b)a² – b²
(a + b + c)²a² + b² + c² + 2ab + 2bc + 2ca
(a – b – c)²a² + b² + c² – 2ab + 2bc – 2ca

Cube Formulas

FormulaFactorization
(a + b)³a³ + 3a²b + 3ab² + b³
(a – b)³a³ – 3a²b + 3ab² – b³
a³ + b³(a + b)(a² – ab + b²)
a³ – b³(a – b)(a² + ab + b²)

Higher Power Formulas

  • (a + b)⁴ = a⁴ + 4a³b + 6a²b² + 4ab³ + b⁴
  • (a – b)⁴ = a⁴ – 4a³b + 6a²b² – 4ab³ + b⁴
  • a⁴ – b⁴ = (a – b)(a + b)(a² + b²)
  • a⁵ – b⁵ = (a – b)(a⁴ + a³b + a²b² + ab³ + b⁴)
  • aⁿ – bⁿ = (a – b)(aⁿ⁻¹ + aⁿ⁻²b + … + bⁿ⁻¹)

Laws of Exponents

  • aᵐ × aⁿ = aᵐ⁺ⁿ
  • aᵐ ÷ aⁿ = aᵐ⁻ⁿ
  • (aᵐ)ⁿ = aᵐⁿ
  • (ab)ᵐ = aᵐ × bᵐ
  • a⁰ = 1
  • a⁻ᵐ = 1/aᵐ

Algebraic Properties

Commutative Property

  • Addition: a + b = b + a
  • Multiplication: a × b = b × a

Associative Property

  • Addition: (a + b) + c = a + (b + c)
  • Multiplication: (a × b) × c = a × (b × c)

Distributive Property

  • a × (b + c) = a × b + a × c
  • a × (b – c) = a × b – a × c

Identity Element

  • Addition: a + 0 = a
  • Multiplication: a × 1 = a

Inverse Element

  • Addition: a + (-a) = 0
  • Multiplication: a × (1/a) = 1 (where a ≠ 0)

Class 9 Algebra Formulas

Logarithmic Formulas

  • logₐ(xy) = logₐx + logₐy
  • logₐ(x/y) = logₐx – logₐy
  • logₐ(xᵐ) = m logₐx
  • logₐa = 1
  • logₐ1 = 0

Class 10 Algebra Formulas

Quadratic Formula

For ax² + bx + c = 0:

  • x = [−b ± √(b² − 4ac)] / 2a

Arithmetic Sequence Formulas

For sequence: a, a + d, a + 2d, …

  • nth term: aₙ = a + (n – 1)d
  • Sum of first n terms: Sₙ = n/2 [2a + (n – 1)d]

Geometric Sequence Formulas

For sequence: a, ar, ar², …

  • nth term: aₙ = arⁿ⁻¹
  • Sum of first n terms: Sₙ = a(1 – rⁿ)/(1 – r)
  • Sum of infinite terms (when |r| < 1): S = a/(1 – r)

Class 11 Algebra Formulas

Factorial Formula

  • n! = n × (n – 1) × (n – 2) × … × 3 × 2 × 1

Permutation Formulas

  • ⁿPᵣ = n!/(n – r)!

Combination Formula

  • ⁿCᵣ = n!/[r!(n – r)!]

Difference of Powers

When n is even:

  • aⁿ – bⁿ = (a – b)(aⁿ⁻¹ + aⁿ⁻²b + … + bⁿ⁻¹)

When n is odd:

  • aⁿ + bⁿ = (a + b)(aⁿ⁻¹ – aⁿ⁻²b + … + bⁿ⁻¹)

Exponent Rules

  • (aᵐ)(aⁿ) = aᵐ⁺ⁿ
  • (ab)ᵐ = aᵐbᵐ
  • (aᵐ)ⁿ = aᵐⁿ

Class 12 Algebra Formulas

Vector Algebra Formulas

For vector a = xi + yj + zk:

  • Magnitude: |a| = √(x² + y² + z²)
  • Unit vector: â = a/|a|

Dot Product

  • a ⋅ b = |a||b|cosθ (where θ is the angle between vectors)

Cross Product

  • a × b = |a||b|sinθ (where θ is the angle between vectors)

Scalar Triple Product

  • [a b c] = a ⋅ (b × c) = (a × b) ⋅ c

Vector Addition Properties

  • a + b = b + a (Commutative)
  • a + (b + c) = (a + b) + c (Associative)
  • k(a + b) = ka + kb (Distributive)

Direction Cosines

  • For direction angles α, β, γ: l = cosα, m = cosβ, n = cosγ
  • cos²α + cos²β + cos²γ = 1

Important Unit Vectors

  • î =
  • ĵ =
  • k̂ =
Share This Article